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1.   

The study of the vibration of membranes is important in the design of drums, receivers
and loudspeakers. Membrane shapes in the form of rectangles, circles, circular sectors, and
ellipses have been studied [1, 2]. The case for a perturbed circular boundary was discussed
in reference [1], where it was found that the frequency is always increased. The purpose
of the present note is to investigate whether a phase difference in the boundary waviness
has any effect. A membrane strip with wavy boundaries shall be considered, described in
Cartesian co-ordinates (x', y') by

y'= a sin (lx'/L), y'=L+ a sin (lx'/L+ b), (1)

where L is the mean width, a is the amplitude, 2pL/l is the period of corrugations, and
b is a phase difference (Figure 1). One normalizes all lengths by L, drop primes, and assume
o= a/L�1. The boundaries become

y= o sin (lx), y=1+ o sin (lx+ b). (2)

The governing equation is

wxx +wyy + k2w=0, (3)

where w is the vertical displacement and k is the normalized vibrational frequency, i.e.,
(frequency) L/z[(tension per length)/(mass per area)]. One seeks the eigenvalue k when
w is zero on the boundaries.

2.  

If o were zero, the solution for the gravest (most important) mode is w=sin ky where
k= p. The effect of waviness on this mode is now investigated. Let

k= p(1+ o2b+0(o4)). (4)

The expansion in o2 is due to the fact that frequency is an even function of amplitude o.
The constant b is to be determined. One also expands w:

w=w0 (y)+ ow1 (x, y)+ o2w2 (x, y)+0(o3), (5)

where

w0 = sin py. (6)
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The boundary condition that w is zero at y= o sin (lx) gives

0=w =o sin lx =w =0 + o sin (lx)wy =0 + (o2 sin2 (lx)/2)wyy =0 + · · ·

=w0 =0 + o(w1 =0 + sin (lx)w0y =0)

+ o2(w2 =0 + sin (lx)w1y =0 + 1
2 sin2 (lx)w0yy =0)+ · · · . (7)

Similarly, on the other side,

0=w =1+ o sin (lx+ b) =w0 =1 + o(w1 =1 + sin (lx+ b)w0y =1

+ o2(w2 =1 + sin (lx+ b)w1y =1 + 1
2 sin2(lx+ b)w0yy =1)+ · · · . (8)

Equations (3–5) give the first order correction

w1xx +w1yy + p2w1 =0. (9)

Equations (7, 8) give the boundary conditions

w1 (x, 0)=−sin (lx)w0y =0 =−p sin (lx), (10)

w1 (x, 1)=−sin (lx+ b)w0y =1 = p sin (lx+ b). (11)

Let

w1 (x, y)= eilxf(y), (12)

where only the real part of the product has any physical significance. Then equations (9–11)
become

f0(y)+ (p2 − l2)f=0, f(0)= ip, f(1)=−ip eib. (13, 14)

The solution is

ip cos (zp2 − l2y)− ip(eib +cos zp2 − l2)
sin (zp2 − l2y)

sin zp2 − l2
, if lQ p.

fy=g
G

G

F

f

ip−ip(1+eib)y, if l= p, (15)

ip cosh (zl2 − p2y)− ip(eib +cosh zl2 − p2)
sinh (zl2 − p2y)

sinh zl2 − p2
, if lq p.

Figure 1. The geometry of the membrane strip.
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The next order problem is more involved:

w2xx +w2yy + p2w2 =−2p2bw0 =−2p2b sin (py), (16)

w2 (x, 0)=−sin (lx) eilxf'(0)= (i/2) (e2ilx −1)f'(0), (17)

w2 (x, 1)=−sin (lx+ b) eilxf'(1)=
i
2

(e2ilx+ib −e−ib)f'(1). (18)

Here, the full complex form of sin (lx) and sin (lx+ b) has been carefully inserted. Guided
by the boundary conditions set,

w2 (x, y)=c0 (y)+c2 (y) e2ilx. (19)

Then,

c00 (y)+ p2c0 =−2p2b sin (py), (20)

c'0 (0)= (−i/2)f'(0), c0 (1)= (−i/2) e−ibf'(1), (21)

c02 (y)+ (p2 −4l2)c2 =0, (22)

c2 (0)= (i/2)f'(0), c2 (1)= (i/2) eibf'(1). (23)

The solution of c2 will not be investigated, which has three forms, depending on whether
2l is greater, equal or less than p. More interesting is the solution of c0 which gives the
frequency changes.

From equation (20), the general solution is

c0 = c1 sin (py)+ c2 cos (py)+ bpy cos (py). (24)

The first term sin (py) can be absorbed into w0, or one can set c1 =0 without loss of
generality. Using the boundary conditions (21) one finds c2 =−if'(0)/2 and after some
work,

zp2 − l2

sin zp2 − l2
[cos zp2 − l2 + cos b], lQ p,

b=
i

2p
[f'(0)+e−ibf'(1)]=g

G

G

G

G

G

G

F

f

1+cos b, l= p, (25)

zl2 − p2

sinh zl2 − p2
[cosh zl2 − p2 + cos b], lq p.

3.   

The relative frequency change is proportional to amplitude a squared and the parameter
b. For given phase difference b, b is plotted against period l in Figure 2. In general b
increases with l and approaches zl2 − p2 for large l. For small l, b0−2p2(1−cos b)/l2

which is large and negative for b$ 0. Thus for in-phase boundaries (b=0) the frequency
of vibration is always increased, while the frequency may be increased or decreased if the
waviness is out of phase, with the maximum decrease at 180° out of phase. This result
differs from that of a perturbed circle, where Rayleigh always found an increase in pitch.
From equation (25) one finds that the frequency is unchanged (b=0) if phase and period
are such that

l=zb(2p− b). (26)
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Figure 2. The frequency parameter b as a function of wave number l for various phase difference b. From
top to bottom: b=0, 0·1p, 0·25p, 0·5p, p.

This relation is also reflected in Figure 2. Since fastening a membrane at discrete points
on the boundary mimics a perturbed wavy boundary, equation (26) implies there is an
optimum spacing and phase shift for the fastening points such that changes in frequency
may be minimized.
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